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Concluding remarks

By J. FrRIEDEL

Laboratoire de Physique des Solides, Université Paris Sud,
Bdtiment 510, 91405 Orsay, France

For the complex and anisotropic compounds studied in this meeting, it is necessary
to establish a hierarchy of factors and to build simplified models that take into account
only the most important contributions. The flexibility of these complex compounds
leads to many possible crossovers between leading factors, of potential interest for
applications. Examples are given of both inter- and intra-unit interactions.

INTRODUCTION

Some general remarks can be made on the type of work reported in this meeting, as examples
of a trend that has developed in the study of condensed matter. First, the compounds studied
are both complex and various. To obtain reproducible and meaningful results long-term
cooperation between physicists and chemists is needed. Over the years such cooperation has
been successfully developed in many places. Because of this complexity and variety, it would
be hopeless in most cases to start from an ab initio study of the atomic or electronic structure.
To avoid wasted effort, one needs to define the leading factors; once such a hierarchy is obtained,
one can hope to build a simplified effective model by using only the more important factors.
This is necessary both to analyse the properties of known compounds and to suggest new ones
of potential interest. Not very surprisingly, one finds in most cases that such an effective model
has solutions that do not differ substantially from the classical behaviour observed and
understood in more elementary solids such as pure metals, pure covalents or ionic solids.

However, because of the complexity and ensuing flexibility of the compounds described in
this symposium, one often observes that the hierarchy of factors can be altered easily by
changing the physical or chemical conditions. The domain of validity of an effective model
is usually not very large; it is bordered by zones of crossover, where new leading factors take
over. In such crossover conditions, a small change in composition, pressure or temperature can
lead to a large change in some physical properties. Nonlinear conditions are easily attained,
potentially useful for applications, despite the difficulty of producing or stabilizing many of these
complex compounds.

In the one- and two-dimensional compounds studied at this meeting, the anisotropy due to
low dimensionality is an obviously dominant factor. The interplay of possible interactions within
the corresponding building units — chains or planes — or between such units lead, however, to
a variety of crossover régimes. Furthermore, even when too weak to produce a crossover,
secondary factors can have significant effects. These points will now be illustrated.
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1. INTERUNIT INTERACTIONS

If electrons are localized on units, the only possible interactions are coulombic in nature.
New interactions arise if electrons can be transferred from unit to unit. Only a few points need
be stressed in this well known field.

(a) Coulomb interactions

As in ionic solids, one can distinguish: the long-range Madelung energy, if some charge
transfer between or within units exists; the dispersion forces; the short-range electrostatic and
exchange interactions.

In compounds such as TTF-TCNQ, the Madelung energy due to charge transfer between
unlike chains has been balanced by dispersion forces in an attempt to explain the charge transfer
and the relative stability of the observed structures: the Madelung term favours A*B~
alternation, dispersion forces favouring AA and BB regrouping (Metzger & Bloch 1975; Friedel
1977 ; Barisic & Bjelis 1983 ; Noguera 1984). Also the stability of the various three-dimensional
lattice modulations observed in TTF-TCNQ have been studied in terms of Madelung energies
between the charge modulations on the chains (Saub et al. 1976; Barisic & Bjelis 1984;
Megtert 1984).

However, the molecules involved are flat, polarizable and often not even at a centre of
symmetry of the structures considered. The electrostatic interactions cannot therefore be studied
as if molecules were point charges; and the local electrostatic electric field due to charge transfer
polarizes the molecules. Contrary to what happens in cubic ionic solids such as NaCl, the
Madelung energy involves not only a complex geometry but is cut down by a large £ dependent
dielectric constant; the dispersion forces are, in a similar way, cut down by a large £ and w
dependent dielectric constant (Noguera 1984).

These dielectric constants are not well known. One must therefore conclude that these
coulomb terms are small and hard to compute exactly. When they dominate because electrons
are really localized on units, they must be compared to long-range elastic terms, which can
arise from the short-range electrostatic and exchange repulsions.

(b) Interunit electron transfer

In a number of one- or two-dimensional compounds, the electrons are delocalized within
each unit, as proved by a ‘longitudinal’ electrical conduction along the chains or planes. But
then in most cases one also observes a smaller but finite ‘transverse’ electrical conduction in
directions that involve electron transfer from unit to unit.

The exact role of the transfer integral, ¢, which allows this transfer in the transverse direction
depends on its relative strength with respect to the relaxation rate v along the units
(Shitzkovsky et al. 1978).

If t; > hv|, the motion of electrons from unit to unit is coherent and hence described by
three-dimensional Block functions. The interunit jumping rate is given by ¢,, and this transverse
motion warps somewhat the Fermi planes (or cylinders) that would otherwise exist for
independent chains (or planes).

However, if ¢; < hv|, the electron is scattered along the unit before it has time to transfer
fully to a neighbouring unit by coherent motion. The jumping rate from unit to unit is then
slowed down by the ratio of the relaxation time v;! to the coherent jumping time Af7'. It
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becomes equal to 3 /hv; and the motion of the electron from unit to unit becomes diffusive.
The Fermi surface remains flat or cylindrical, but it is blurred by a Dingle temperature Av,.
In that case, which seems frequently observed in one-dimensional metallic compounds, the ratio
of longitudinal and transverse conductivities is independent of temperature (both varying in
proportion to v).

The transverse transfer integral ¢, can also couple low-temperature fluctuating instabilities,
which tend to develop on isolated units such as lattice or spin modulations or superconductivity.
Again, two régimes are expected (Bourbonnais 1984). If t;, > A4, the pseudogap of these
fluctuations, ¢, ensures a strong phase blocking of the fluctuations into a three-dimensional
phase change at a finite temperature 7;, which is then an increasing function of ¢,. The range
of fluctuations above 7; should be very small.

If t; < A4, the intra-unit fluctuations reduce the effectiveness of ¢, to 3 /4. T, becomes the
same function of § /4, while thereis a large range of temperatures, up to 7; & 4, where intra-unit
fluctuations persist. This second régime clearly applies to most one-dimensional compounds
with lattice modulations. It is reasonable to think that it also applies to superconductivity in
(TMTTF),X compounds.

In conclusion, there are many possible crossover régimes for the interunit interactions. It
would be of interest to characterize more clearly the domains where each of them is dominant.
This has been partly done for one-dimensional compounds, but two-dimensional compounds
have been much less studied in this way. For instance, the tunnelling between conductive layers
in semiconductive superlattices have so far been assumed to be coherent; there might, however,
be cases where they are diffusive. It would also be of interest to re-examine possible (but
obviously small) fluctuations in two-dimensional compounds.

2. INTRA-UNIT INTERACTIONS

Here again, one has first to decide on which side of the Verwey-Mott transition the
compounds are to be considered. In a number of strongly insulating chain compounds, chemists
are accustomed to assuming that electrons are localized on subunits of the chains — atoms or
molecules — and to describe the magnetic properties in these terms. But, as alréady stressed,
there are a number of one- and two-dimensional compounds with sizeable conductivities, where
electrons are delocalized along the units. In the latter case, the leading parameter is the valence
band width. But, as usual in band theory of solids, secondary features can play an important
role, especially at low temperatures. This is especially true for the compounds with low
dimensionality.

The basic secondary features are the electron—phonon couplings and the electron—electron
repulsions. But the possible effects of impurities or of an applied magnetic field on low-
temperature uncommensurate modulations need also be mentioned.

(a) Electron—phonon against electron—electron couplings in conductive compounds

The electron—phonon couplings are obviously responsible for the low-temperature lattice
modulations observed in many one- and two-dimensional compounds. They are also responsible
for the dimerization gap observed at the Fermi level of polyacetylene chains, and have been
reasonably invoked to predict a local change in dimerization near a charged state: extra carrier
or exciton. Finally they are invoked to explain the metallic conductivity of one-dimensional


http://rsta.royalsocietypublishing.org/

&

)

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

p
FA \

PHILOSOPHICAL
TRANSACTIONS

A

R

—
>~
o[—<
~ =
k= O
= O
= uw

OF

OF

Downloaded from rsta.royalsocietypublishing.org
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(and two-dimensional) compounds, thus avoiding Anderson localization by impurity
scattering.

However, electron—electron couplings, although not strong enough to produce Mott localization,
can be a leading secondary factor.

Thus the low-temperature spin modulations observed in some chain compounds require positive
values of the g, and g, coupling parameters describing the scattering of Fermi electrons. This
in turn is only possible if the direct electron—electron repulsions dominate over the phonon-
mediated attraction. The direct transition observed from antiferromagnetism to supercon-
ductivity also suggests that this is a triplet superconductivity; but analogous discussions of
three-dimensional compounds show that itis not so easy to find a convincing proof of such triplet
character in one-dimensional compounds.

The strong 4 ky fluctuating lattice modulations often observed in chain compounds have
been attributed to strong and longer range electron—electron repulsions. This is quite possible,
as repulsion between electrons sitting on two neighbouring flat molecules can clearly be as
effective as when the two electrons are on the same molecule. Itis coherent with the g, g, scheme,
which would reduce to the diagonal g, = g, in a Hubbard model with only intramolecular
repulsions (Hirsch & Scalapino 1983; cf. discussion in Barisic & Bjelis 1984).

Another case where electron—electron correlations are known to be large are the polyacetylene
chains. Chemists have long been aware that these correlations are especially strong in:
unsaturated carbon bonds. The reason is twofold and arises from the fact that, in a Hubbard
model, the stabilizing correlation energy is proportional to U?/w, where U is the intra-atomic
electron—electron repulsion and w the bandwidth or the energy difference between the occupied
bonding and empty antibonding levels (Friedel 1983, 1984). First, the n-bandwidth w is smaller
than the ¢ one. Second, U can be defined as the energy involved in the atomic reaction

M+M->M"+M".
It is thus given by
U=1-4,

where [ is the first ionization potential and 4 is the electron affinity. AsA < [, Ux I~ I+ 4,
is thus proportional to the electronegativity as defined by Pauling. This is much larger for C
than for Si and Ge. Accordingly, large correlations explain both the larger stability of graphite
than diamond and the much greater frequency of molecules with unsaturated bonds for C than
for Si or Ge.

Thus electron—electron correlations should be taken into account in polyacetylene chains,
and probably not as a mere perturbation, a fact stressed by chemists 20 years ago for the similar
carotenoid chains. Also, the first optical excitation should be excitonic in nature.

(b) Impurity effects on incommensurate modulations

Impurities can act in two rather different ways. First, because they scatter the electrons, they
introduce a Dingle temperature that broadens the Fermi level. This prevents perfect nesting,
and decreases the amplitude of a lattice or spin modulation, destabilizing it. Second, an impurity
tends to block the phase of the modulation to optimize its coupling with the modulation. Three
types of effects are then expected.

Random and frozen impurities will have incompatible effects on the phase of a given
modulation. This ‘frustration’ effect will destabilize a three-dimensional modulation by forcing
it to distort spatially. Above the temperature 7,, where the three-dimensional modulation
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disappears, fluctuations can persist up to 7;, with no phase relation from unit to unit. The
frustration effect of the impurities is then much reduced, because their distance /, along a unit
is larger than their average distance / in three dimensions: 24 & {# for two dimensions and
[, a®* & P for one dimension if a is the lateral size of a unit. Thus T} should decrease with increasing
impurity concentration. Furthermore, at temperatures large enough for the coherence length
of a fluctuation to become less than /;, each impurity can pin its fluctuation independently in
its most stable phase relation; this coupling stabilizes the fluctuations so that 7] should increase
with impurity concentration. One could also say that the normal ‘wiggles’ in charge, spin or
lattice spacing that are set up by the impurity scattering are amplified by the spontaneous
tendancy of the units to produce this modulation.

Finally, the phase blocking by an impurity should lead to a hysteresis characteristic of solid
friction when the modulation is shifted. This shifting can be due either to a change of wavelength
by a change of temperature or pressure, or to a change of phase induced (for a charge density
wave) by an applied electric field. This hysteresis should be much increased if impurities are
allowed to diffuse at a temperature where a three-dimensional modulation is present and then
cooled so as to become immobile: in the heat treatment, the impurities will shift their positions
so as to stabilize their phase relation with the undistorted three-dimensional modulation, so
that it is then more difficult to move the modulation away from the configuration thus pinned
down.

The effect on the amplitude is expected to be preponderant at large concentrations, while
the effects on the phase should be observed mostly at small concentrations. Indeed, in irradiated
one- or two-dimensional compounds, 7T, decreases but 7; increases with the dose (Zuppiroli
1982; Mukta 1982). Solid friction is often observed in incommensurate phases (TTF-TCNQ
under pressure, NbSe, under electric fields), and some of this at least is probably due to impurity
pinning. The special pinning by heat treatment was first observed on a three-dimensional
compound (Jamet & Lederer 1983). It would be of interest to investigate the corresponding
effect in one- or two-dimensional compounds.

(c) Effect of transverse magnetic field on two-dimensional metallic compounds

As shown in (TMTTF),ClO,, a modulation can, in some cases, be stabilized by the
application of a magnetic field. The fundamental reason, as stressed by Gorkov (1984) (cf. also
Fukuyama 1981) is that a (here antiferromagnetic) modulation will be especially stable if its
wavevector @Q shifts the Fermi surface into a nesting condition with itself. In an effectively
two-dimensional compound such as the one considered (¢, > ¢, > ¢.), the nesting produces
small pockets of electrons (or holes) for which the corresponding quasicontinuum of conducting
states is split into Landau levels if a magnetic field H is applied normal to the two-dimensional
sheets. This splitting changes the two-dimensional nesting into an effective one-dimensional
nesting, by reducing a continuous two-dimensional integration in k-space into a summation
over quantized orbits, thusstabilizing the modulation. Furthermore, the system of Landau levels
is especially stable if H is such that the Fermi level falls just midway between two corresponding
quantized orbits of the electron (or hole) pockets. If &/, is the area of the pocket for nesting
Q, the condition is

o= (nt+3+7y)2neH/he, (1)

where 7 is an integer and y a constant smaller than unity (Ziman 1972).
13 Vol. 314. A
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As pointed out by Héritier et al. (1984), for H near to such values, the system should con-
tinue to fulfil the same condition (1) by slightly shifting the vector Q, i.e. by altering .« this is
because the energy of modulation varies smoothly with Q, while the Landau energy presents
a cusp as a minimum when Q varies for a given H (cf. Appendix). As a result, when H varies,
the system jumps by first-order transitions where one Landau level suddenly fills or empties
itself completely. In this analogy to the quantized Hall effect observed in two dimensional doped
semiconductors, the role of the reservoir is played by the (small) variations of Q with H. If
this interpretation is correct, the two-dimensional modulation is stabilized and driven by the
magnetic field, in the same way as modulating fluctuations were locally stabilized by impurities.

The same analysis should equally apply to lattice or spin modulations. The shift in Q to adapt
to H and the production of a succession of first-order transitions should also be observed even
when a two-dimensional modulation with a given Q was stable without H. In this context, it
might be of interest to explore the properties under large H of other two-dimensional conductive
compounds such as the transition metal dichalcogenides.

APPENDIX

I present here a simplified version of the treatments by Gorkov & Lebed (1984) and Héritier
et al. (1984) and comment on it at the end.

(a) Diamagnetic energy of a pocket of electrons or holes

In a semiclassical approximation, the application of a magnetic field A normal to the
two-dimensional sheet quantizes the electron orbits in the £ plane (figure 1). The corresponding
Landau levels are at least partly occupied if

n—1+y <o/dy<n+vy,

where 7, is the area of the pocket; </, = 2meH/fic and 7 is a phase shift less than unity
(figure 2).

Ficure 1. Quantized orbits in an electron or hole pocket.

Since each slice of continuum levels has an average energy equal to that of the Landau level,
the energy change when H is applied is

e, = [ —3(En— En)] (Ey — Ey) n(Ey)
= {[Ey— (n—1) fiw] (— Ey +nfiw) n(Ey), (A1)
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E

u

0 H=0 H#0

Freure 2. Landau levels associated with a pocket of area /.

where

fiw = o aHAE/doA,
E, = nfiw

and n(E) is the density of states of the corresponding continuum of states.

As stressed recently by Gorkov (1984), the energy e, is strongly peaked for exactly filled
Landau levels and especially for a few levels where 7 is small. The presence of a small pocket
in the Fermi geometry thus leads to a special stability, because a succession of fields H,,/n leads
to fiw = Ey;. If the pocket considered is due to the existence of an incommensurate (lattice or spin)
modulation with a wavevector Q in nesting conditions, the energy 3¢, of this modulation is
expected to vary (usually in a continuous and smooth way) with the direction of Q (keeping
in nesting conditions). This point is discussed further below.

We have then to compare 3¢, to the change 8¢y, in Landau energy when the modulation
appears and pockets are formed. The change 8¢y, is obtained by subtracting from ¢, the Landau
diamagnetic energy {(fw)?n(Ey;) of the same electrons before the modulation appeared. It is
shown in figure 3 as a function of H. The cusp of 6e;,(H) for given Q leads to a cusp of 8e;,(Q)

SGL /\
141
, ‘A /\i

Ficure 3. Variation with H of the Landau energy of a pocket of electrons (H,, is such that iw = Ey).

~

= - e —

for given H. This is to be contrasted to the smooth variation of 8¢y, in nesting conditions, for
varying directions of Q.

If Q, is the wavevector for maximum stability of the modulation for H = 0, the same
modulation will be especially stable for a succession of fields Hy, /n, where fiw(Hg ) = Ey. For

13-2
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fields H deviating somewhat from these values, the total energy ey, + 8¢ is kept a minimum
by shifting Q a little from Q , (Héritier et al. 1984) so as to change o/, to continue to fulfil the

condition

MQ = (n +'y) MO'
Landau levels as thus kept exactly full or empty and 8¢y, is kept at one of its cusps. A continuous
variation of H leads to a discontinuous transition from one such solution (n) to the next, by
a first-order transition with hysteresis.

(b) Energy of modulation

It would seem a priori that the application of the field could make a modulation Q stable
if the gain in Landau energy 8¢, at one of its cusps is larger than the energy deg to spend to
create the modulation. In actual fact, the discussion is somewhat different: as first stressed by
Yoshioka & Fukuyama (1981) and considered also by Gorkov & Lebed (1984) and Heéritier
et al. (1984), the application of H alters the conditions of nesting in a way that stabilizes the

modulation.
The energy e, of a modulation varies strongly with the length of Q near nesting conditions.

In the usual one beam approximation, this variation is dominated by
1
I= —_—
Icz Ex—Eyxiq
oce

Near nesting conditions, it is the region of £ near to the point where E, = E,, where £, and
E) o are nesting, that dominates (figure 4). Taking k, as the origin in k space and k, along
V, E, at k = k,, we can develop Ey and Ej, o as

E,=E,— Ak, +CE+ ...,
Epio=Ey+ Ak +Ck+...,
where A, A’, C, C’ are constants.

(8)
ka

Ey
FiGurE 4. Nesting: (a) ky > 0; () ky < 0. (Special case where 4 = 4", C = (")

Then, in the absence of magnetic field,

1 1
I~—k§cz (A+A’)k1~_ c O %(oc—,b’kM) for Ey > E,,
oce Z_Z
e p— for Ey < E,,
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where a and # are positive and slowly varying functions of Ey. When the length of Q varies
for a given direction of Q near nesting conditions, E is fixed and £y varies. The sudden increase
of I for ky; > 0 can favour the nesting condition £y = 0. In such nesting conditions, /, and thus
deg, vary in a smooth way when the direction of Q varies, thus £y, 4, 4’, C, C’ vary. One would,
however, expect a special stability of nesting for points of the Fermi surface with equal
curvatures. This is topologically possible for (TMTTF),ClO, in the disordered case (or for
(TMTTF),PF,) for inflexion points at the Fermi surface. Then, in this approximation, / and
deg should have a negative divergence (figure 5).

Ficurke 5. Nesting on inflection points of By = Ey.

Now in the presence of a magnetic field normal to £,, k,, the integration over &, £, is replaced
by an integration over occupied quantized orbits in the £ plane. / then obviously diverges
logarithmically if the orbits are in any nesting conditions. The situation is mathematically the
same as for a one-dimensional modulation with no magnetic field.

All these logarithmic divergences are removed if one uses a more correct two beams
approximation (Pick & Blandin 1964). As in real one-dimensional problems, the cut off in the
logarithm is then related to the energy gap, due itself to the modulation potential. It varies,
as does d€g, in a smooth way with the direction of Q, even across nesting on inflection points:
this insures that these are not pinning points against the variation of Q with H. The negative
value of dej, associated with the logarithm insures the stability of the modulation under
magnetic field.

Discussion

The discussion developed here is limited to magnetic fields weak enough for a semiclassical
discussion using quantized orbits to hold. In large fields, tunnel effects between neighbouring
pockets should be considered. They would complicate the effects.

The discussion is also not valid for very weak fields, where the transfer integral ¢, in the
direction parallel to H is no longer negligible, however small .. Furthermore the order of Cl1O,
introduces new Brillouin zone boundaries that complicate the geometry of the pockets involved,
while the disorder of ClO, introduces a Dingle temperature that gives another limitation for
nesting and for the minimum field H, for which nesting is essentially one-dimensional.
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